时间:2022-12-07 16:23:34来源:搜狐
今天带来分别介绍电流互感器及电压互感器的运行方式?「电力互感器」,关于分别介绍电流互感器及电压互感器的运行方式?「电力互感器」很多人还不知道,现在让我们一起来看看吧!
电流互感器是依据电磁感应原理将一次侧大电流转换成二次侧小电流来测量的仪器。电流互感器是由闭合的铁心和绕组组成。它的一次侧绕组匝数很少,串在需要测量的电流的线路中。
因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。电流互感器是把一次侧大电流转换成二次侧小电流来测量 ,二次侧不可开路。词条介绍了其工作原理、参数说明、分类、使用介绍等。
电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。
互感器又称为仪用变压器,是电流互感器和电压互感器的统称。能将高电压变成低电压、大电流变成小电流,用于量测或保护系统。其功能主要是将高电压或大电流按比例变换成标准低电压(100V)或标准小电流(5A或1A,均指额定值),以便实现测量仪表、保护设备及自动控制设备的标准化、小型化。同时互感器还可用来隔开高电压系统,以保证人身和设备的安全。
仪用变压器是指一种特殊用途的变压器,它有两个主要用途:一是用来扩大交流电工仪表的量程,二是用来隔离高电压、大电流并使其变成低电压、小电流后中,作为信号供继电保护、自动装置和控制回路使用。
普通电流互感器与零序电流互感器的区别
电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。
零序电流互感器工作原理
零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。
零序电流保护具体应用可在三相线路上各装一个电流互感器(CT),或让三相导线一起穿过一零序CT,也可在中性线N上安装一个零序CT,利用这些C.T来检测三相的电流矢量和,即零序电流Io,IA IB IC=Io,当线路上所接的三相负荷完全平衡时(无接地故障,且不考虑线路、电器设备的泄漏电流),Io=0;当线路上所接的三相负荷不平衡,则Io=IN,此时的零序电流为不平衡电流IN;当某一相发生接地故障时,必然产生一个单相接地故障电流Id,此时检测到的零序电流IO=IN Id,是三相不平衡电流与单相接地电流的矢量和。
零序电流互感器的作用
当电路中发生触电或漏电故障时,保护动作,切断电源。
零序电流互感器的使用
可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和。
零序电流互感器的安装
整体式互感器安装要在敷设电缆前进行,电缆敷设时穿过互感器。开口式互感器不受电缆敷设与否的限制,具体方法如下:
1)拆下互感器“K1ˊ”、“K2ˊ”的联接压片(圆形互感器无此项要求)。
2)将互感器顶部两个内六角螺栓松开拆下(圆形互感器是将两侧的紧固螺丝松开拆下),互感器便分为两部分。
3)把互感器套在电缆上,将接触面擦干净,薄薄涂上一层防锈油,对好互感器两部分后拧上内六角螺栓(两侧的紧固螺丝),互感器两部分要对齐以免影响性能。
4)将连接片固定在“K1ˊ”、“K2ˊ”上(圆形互感器无此项要求)。
5)内孔﹥120mm的互感器如水平安装时,请加非导磁支架。
电流互感器的主要问题
电流互感器的二次负载阻抗如果超过了其容许的二次负载阻抗.为什么准确度就会下降?
电流互感器二次负载阻抗的大小对互感器的准确度有很大影响。这是因为,如果电流互感器的二次负载阻抗增加得很多,超出了所容许的二次负载阻抗时,励磁电流的数值就会大大增加,而使铁芯进入饱和状态,在这种情况下,一次电流的很大一部分将用来提供励磁电流,从而使互感器的误差大为增加,其准确度就随之下降了。
用于差动保护的电流互感器,要求其铁芯好,还要加大铁芯截面,为什么?
在系统正常运行或差动保护范围外部短路时,差动保护两端电流互感器的电流数值和相位相同,应没有电流流入差动继电器,但实际上这两套电流互感器的特性不可能 完全相同,励磁电流便不一样,二次电流不会相等,继电器中将流过 不平衡电流。为了减少不平衡电流,必须改进电流互感器的结构,使其不致饱和,或选用损耗小的特种硅钢片制作铁芯,并加大铁芯截面。
电流互感器二次绕组的接线有哪几种方式?
根据继电保护和自动装置的不同要求,电流互感器二次绕组通常有以下几种接线方式:
⑴完全(三相)星形接线;
⑵不完全(两相)星形接线;
⑶三角形接线;
⑷三相并接以获得零序电流接线;
⑸两相差接线;
⑹一相用两只电流互感器串联的接线;
⑺一相用两只电流互感器并联的接线。
什么叫电流互感器的接线系数?接线系数有什么作用?
通过继电器的电流与电流互感器二次电流的比值叫电流互感器的接线系数,即Kc=Ik/I2 式中
Ik--流人继电器中的电流;
12--流人电流互感器的二次电流;
接线系数是继电保护整定计算中的一个重要参数,对各种电流保护测量元件动作值的计算,都要考虑接线系数。
什么叫电压互感器反充电?对保护装置有什么影响?
零序电流互感器的安装
(1)电缆头和零序电流互感器的支架应用绝缘物可靠隔离。
(2)发生单相接地时,接地电流不仅在地中流过,也可能沿着电缆外皮流过。为了防止区外单相接地故障时装置误动作,电缆头接地线应穿过零序电流互感器再接地。(接地线回穿过零序电流互感器再接地)
常用电压互感器的接线
电压互感器在三相电路中常用的接线方式有四种:如下图
1. 一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。
2. 两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,如图1(b)。
3. 三个单相电压互感器接成Y0/Y0形,如图1(c)。可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
4. 一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
具体分析如下PT接V/V型的接线图: 左图是正确接线,电压平衡;右图是错误接线,电压不平衡。
互感器的运行与维护
电压互感器的运行与维护
一、电压互感器的正常运行
(1) 电压互感器在额定容量下允许长期运行,但在任何情况下都不允许超过最大容量运行。
(2) 电压互感器副线圈的负载是高阻抗仪表,副边电流很小,接近于磁化电流,原、副线圈中的漏阻抗压降也很小,所以,电压互感器在正常运行时接近于空载。
(3) 电压互感器在运行中,二次侧不能短路。
(4)60 kV 及以下的电压互感器其一次侧都应装熔断器,以免互感器出现故障时使事故扩大。110kV 及以上电压互感器,一次侧一般不装熔断器,因为这一类电压互感器发生事故的可能性较小;同时这样电压级的电网中,熔断器的断流容量很难达到要求。
(5) 电压互感器运行电压应不超过额定电压的110 %。
(6) 为了保证安全,电压互感器二次绕组的一个出线端或互感器的中性点应直接接地,以防止高压侧绝缘击穿后高电压窜至二次侧对人身和设备的危险。当需要在电压互感器本体或其底座上进行工作时,不仅要把互感器一次侧断开,而且还要在电压互感器二次侧有明显的断开点,以避免可能从其他电压互感器向停电的电压互感器的二次回路反充电,从而在一次侧感应出高电压。
(7) 启用电压互感器时,应检查绝缘是否良好,定相是否正确,油位是否正常,接头是否牢固。停用电压互感器时,应先退出相关保护和自动装置,断开二次侧自动空气开关,或取下二次侧熔断器,再拉开一次侧隔离开关,防止反冲电。并记录有关回路停止电能计量时间。
二、电压互感器的操作
(1) 值班人员在准备工作结束后,可进行送电操作,放上高、低压侧熔断器,合上其出口隔离开关,使电压互感器投入运行,然后投入电压互感器所带的继电保护及自动装置。
(2) 电压互感器的并列运行在双母线制中,每组母线接一台电压互感器。若由于负载需要,两台电压互感器在低压侧并列运行,此时,应先检查母联断路器是否合上,如未合上,则合上后,再进行低压侧的并列。否则,由于高压侧电压不平衡,低压侧电路内产生较大的环流,容易引起低压熔断器熔断,致使保护装置失去电源。
(3) 电压互感器的停用。在双母线制中( 在其他接线方式中,电压互感器随同母线一起停用) ,如一台电压互感器出口隔离开关、电压互感器本体或电压互感器低压侧电阻需要检修时,则须停用电压互感器,其操作程序如下:
①先停用电压互感器所带的保护及自动装置,如装有自动切换装置或手动切换装置时,其所带的保护及自动装置可不停用。
②取下低压熔断器,以防止反充电,使高压侧带电。
③拉开电压互感器出口隔离开关,取下高压侧熔断器。
④进行验电,用电压等级合适而且合格的验电器,在电压互感器进线各相分别验电。验明无电后,装设好接地线,悬挂标示牌,经过工作许可手续,便可进行检修工作。
三、更换运行中的电压互感器及二次线圈时的注意事项:
1) 个别电压互感器在运行中损坏需要更换时,应选用电压等级与电网电压相符,变比相同、极性正确、励磁特性相近的电压互感器,并经试验合格。
2) 更换成组的电压互感器时,还应对并列运行的电压互感器检查其接线组别,并核对相位。
3) 电压互感器二次线圈更换后,必须进行核对,以免造成错误接线,和防止二次回路短路
4)电压互感器及二次线圈更换后必须测定极性。
四、电压互感器运行的巡视检查
(1) 检查绝缘子应清洁,无破损、无裂纹。无放电现象.
(2) 检查油位应正常, 油色应透明不发黑,无渗,漏油现象.
(3) 检查呼吸器内的吸湿剂颜色应正常,无潮解,吸湿剂变色超过1/2 应更换。
(4) 检查内部声音应正常,无放电及剧烈电磁振动声,无焦臭味。
(5) 检查密装置应良好,各部位螺丝应牢固,无松动。
(6) 检查一次侧引线接头连接应良好,无松动,无过热;高压熔断器限流电阻及断线保护用电容器应完好;二次回路的电缆及导线应无腐蚀和损伤,二次接线无短路现象。
(7) 检查电压互感器一次侧中性点接地及二次绕组接地应良好。
(8) 检查端子箱应清洁,未受潮。
电流互感器的运行与维护
一、电流互感器的允许运行方式
(1) 允许运行容量。电流互感器应在铭牌规定的额定容量范围内运行。如果超过铭牌额定容量运行,则使准确度降低,测量误差增大,表计读数不准,这一点与电压互感器相同。
(2) 一次侧允许电流。电流互感器一次侧电流允许不大于1.1 倍额定电流下长期运行。如果长期运行过负荷运行,会使测量误差加大,并使绕组过热或损坏. 电流互感器的二次侧电流一般为5A 或1A ,常用的为5A 。电流互感器在正常运行时,其二次侧回路接近于短路状态。
(3) 运行中电流互感器的二次侧不能开路。如果运行中的电流互感器二次侧开路,则二次侧会出现高电压,从而危及二次设备和人身安全。若工作需要断开二次回路( 如拆除仪表) 时,在断开前,应先将其二次侧端子用连接片可靠短接。
(4) 电流互感器二次侧和铁芯均应可靠接地。(防止一、二次绝缘击穿时,一次高压窜入二次侧)
(5) 二次侧负载阻抗不得大于额定负载阻抗(以保证测量的准确性)
(6) 电流互感器在接线时要注意其端子的极性
(7)TA 不得与TV 二次侧互相连接(以免使TA 近似开路,出现高电压的危险)
(8) 工作时,必须有专人监护,使用绝缘工具,并站在绝缘垫上。
二、电流互感器运行的巡视检查
(1) 检查瓷质部分应清洁,无破损、无裂纹、无放电痕迹。
(2) 检查油位应正常,油色应透明不发黑,无渗、漏油现象。
(3) 检查电流互感器应无异常声音和焦臭味。
(4) 检查一次侧引线接头应牢固,压接螺丝无松动,无过热现象。
(5) 检查二次绕组接地线应良好,接地牢固,无松动,无断裂现象。
(6) 检查端子箱应清洁、不受潮、二次端子接触良好,无开路、放电或打火现象。
电压互感器与电流互感器的区别
电压互感器和电流互感器在作用原理上的区别
主要区别是正常运行时工作状态大不相同,主要表现为:
1)电流互感器二次可以短路,但是不得开路;电压互感器二次可以开路,但是不得短路
2)对于二次侧的负荷来说,电压互感器的一次内阻抗较小甚至可以忽略不计,大可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。
3)电压互感器正常工作时的磁通密度接近饱和值,故障时候磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值.
4)电压互感器是用来测量电网高电压的特殊变压器,它能将高电压按规定比例转换为较低的电压后,再连接到仪表上去测量。电压互感器,原边电压无论是多少伏,而副边电压一般均规定为100伏,以供给电压表、功率表及千瓦小时表和继电器的电压线圈所需要的电压。把大电流按规定比例转换为小电流的电气设备,称为电流互感器。电流互感器副边的电流一般规定为5安或1安,以供给电流表、功率表、千瓦小时表和继电器的电流线圈电流。
互感器的使用注意事项与故障分析
每个产品都有自己的注意事项,应用互感器时应注意以下几个方面:
1、电流互感器的额定一次电流一般按线路的1.2~1.4倍电流选用电流互感器,这主要是考虑线路过载时不至于烧毁电流互感器和电流表或电能表等用电设备。
2、电流互感器的额定一次电流也不能选得比线路的实际工作电流相差太大,这将影响电流互感器的计量 精度。
3、互感器是在额定的二次输出负载范围内才能保证互感器精度。因此包括二次线路负载以及计量装置的负载都为互感器实际工作的负载,当互感器二次实际输出负载大于互感器二次额定输出负载时,互感器精度将降低,严重过载时将烧毁互感器。
4、当互感器二次实际输出负载低于互感器额定二次输出负载时,互感器的精度将降低。
5、根椐不同的使用场合选用适宜的互感器产品。
6、户外用互感器和户内用互感器莫混用。
烧坏原因:
1、电压互感器低压侧匝间和相间短路时,低压保险尚未熔断,由于激磁电流迅速增大,使高压熔管熔丝 熔断或烧坏互感器。
2、当10kV出线发生单相接地时,电压互感器一次侧非故障相对地电压为正常电压值的根号3倍。电压互 感器的铁芯很快饱和,激磁电流急剧增强,使熔丝熔断。
3、由于电力网络中含有电容性和电感性参数的元件,特别是带有铁芯的铁磁电感元件,在参数组合不利 时引起铁磁谐振。
4、流过电压互感器一次绕组的零序电流增大(相对于接地电流超标的系统而言),长时间运行时,该零序互感器产生的热效应将使电压互感器的绝缘损坏、炸裂;
5、系统中存在非线性的振荡(弧光接地过电压),大大加剧了系统中电压互感器的损坏进程;
6、电压互感器自身的散热条件较差。
类型区别:
最重要区别是在正常运行时其工作状态的不同,主要表现以下几个方面:
1、电压互感器正常工作时的磁通密度接近饱和值,故障时候磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值。
2、电压互感器是用来测量电网高电压的特殊变压器,它能将高电压按规定比例转换为较低的电压后,再连接到仪表上去测量。电压互感器,原边电压无论是多少伏,而副边电压一般均规定为100伏,以供给电压表、功率表及千瓦小时表和继电器的电压线圈所需要的电压。
3、电流互感器二次可以短路,但是不得开路;电压互感器二次可以开路,但是不得短路.把大电流按规定比例转换为小电流的电气设备,称为电流互感器。电流互感器副边的电流一般规定为5安或1安,以供给电流表、功率表、千瓦小时表和继电器的电流线圈电流。
4、对于二次侧的负荷来说,电压互感器的一次内阻抗较小甚至可以忽略不计,大可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。
互感器的误差测量与种类对比
误差测量
直流法
用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性。
1.K1为同极性即互感器为减极性。如指针摆动与上述相反为加极性。
交流法
补偿量如下:
Δf=Nx/(N2-Nx)×100%
匝数补偿
只对比差起到补偿作用,补偿量与二次负荷和电流大小无关。补偿匝数一般只有几匝,匝数补偿应计算电流低端二次阻抗最大时,和电流高端二次阻抗最小时误差。对于高精度的微型电流互感器匝数补偿哪怕只补偿1匝,就会补偿过量。这时可以采用半匝或分数匝补偿。但是电流互感器的匝数是以通过铁芯窗口的封闭回路计算的,电流互感器的匝数是一匝一匝计算的,不存在半匝的情况。采用半匝或分数匝补偿必须采用辅助手段如:双绕组、双铁芯等。辅助铁芯补偿对比差、
角差都起到补偿作用,但辅助铁芯补偿的方法制作工艺比较复杂。电容补偿,直接在二次绕组两端并联电容就可以。其对比差起正补偿作用,补偿大小与二次负荷Z=RiX中X分量成正比,与补偿电容大小成正比;对角差都起到负补偿,补偿大小与二次负荷Z=RiX中R分量成正比,与补偿电容大小成正比。电容补偿是一种比较理想的补偿方法。在微型精密电流互感器中,一般二次绕组直接接运放的电流/电压变换,其二次阻抗基本为0,此时电容补偿的作用就比较小。一般可以在电流/电压变换阶段增加移相电路可以解决角差问题。用户可以根据电流互感器出厂时所带的该互感器的检验报告中检验误差数据进行调整计算移相电路。
种类对比
电压互感器(PT)和电流互感器(CT)是电力系统重要的电气设备,它承担着高、低压系统之间的隔离及高压量向低压量转换的职能。其接线的正确与否,对系统的保护、测量、监察等设备的正常工作有极其重要的意义。在新安装PT、CT投运或更换PT、CT二次电缆时,利用极性试验法检验PT、CT接线的正确性,已经是继电保护工作人员必不可少的工作程序。
避免其极性接反就是要找到互感器输入和输出的“同名端”,具体的方法就是“点极性”。这里以电流互感器为例说明如何点极性。具体方法是将指针式万用表接在互感器二次输出绕组上,万用表打在直流电压档;然后将一节干电池的负极固定在电流互感器的一次输出导线上;再用干电池的正极去“点”电流互感器的一次输入导线,这样在互感器一次回路就会产生一个 (正)脉冲电流;同时观察指针万用表的表针向哪个方向“偏移”,若万用表的表针从0由左向右偏移,j即表针“正启”,说明接入的“电流互感器一次输入端”与“指针式万用表正接线柱连接的电流互感器二次某输出端”是同名端,而这种接线就称为“正极性”或“减极性”;若万用表的表针从0由右向左偏移,即表针“反启”,说明接入的“电流互感器一次输入端”与“指针式万用表正接线柱连接的电流互感器二次某输出端”不是同名端,而这种接线就称为“反极性”或“加极性”。
来源:网络、电器百科、工业科普、电气百科等综合整理
声明:文章仅代表原作者观点,不代表本站立场;如有侵权、违规,可直接反馈本站,我们将会作修改或删除处理。
图文推荐
2022-12-07 16:23:28
2022-12-07 16:23:14
2022-12-07 16:17:27
2022-12-07 16:17:03
2022-12-07 16:05:32
2022-12-07 16:05:05
热点排行
精彩文章
2022-12-07 16:23:32
2022-12-07 16:23:19
2022-12-07 16:11:19
2022-12-07 16:11:08
2022-12-07 16:05:37
2022-12-07 16:05:10
热门推荐