时间:2022-12-24 10:17:23来源:搜狐
今天带来电是从哪来的「电怎么来的怎么解释」,关于电是从哪来的「电怎么来的怎么解释」很多人还不知道,现在让我们一起来看看吧!
说起来电从哪里来,很多人都会说从发电厂来啊,从发电机来啊等等,那你就太俗套了。
如果详细追寻电的来源,那么我们首先得来说一说电子,不要误会,不是你小时候装到电子手表里的那个纽扣电池,虽然那时间也将这种纽扣电池叫做电子。
说起电,你要先知道电子书归正传,电子,最早发现的基本粒子。带负电,电量为1.602176634×10-19库仑,是电量的最小单元。质量为9.10956×10-31kg。 常用符号e表示。1897年由英国物理学家约瑟夫·约翰·汤姆生在研究阴极射线时发现。一切原子都由一个带正电的原子核和围绕它运动的若干电子组成。电荷的定向运动形成电流,如金属导线中的电流。利用电场和磁场,能按照需要控制电子的运动(在固体、真空中),从而制造出各种电子仪器和元件,如各种电子管、电子显微镜等。电子的波动性于1927年由晶体衍射实验得到证实。
电子(electron)是带负电的亚原子粒子。它可以是自由的(不属于任何原子),也可以被原子核束缚。原子中的电子在各种各样的半径和描述能量级别的球形壳里存在。球形壳越大,包含在电子里的能量越高。
在电体中,电流由电子在原子间的独立运动产生,并通常从电极的阴极到阳极。在半导体材料中,电流也是由运动的电子产生的。但有时候,将电流想象成从原子到原子的缺电子运动更具有说明性。半导体里的缺电子的原子被称为空穴(hole)。通常,空穴从电极的正极"移动"到负极。
电子属于亚原子粒子中的轻子类。轻子被认为是构成物质的基本粒子之一。它带有1/2自旋,即又是一种费米子(按照费米—狄拉克统计)。电子所带电荷为e=1.6×10-19C(库仑),质量为9.11×10-31kg(0.51MeV/c2),能量为5.11×103eV,通常被表示为e⁻。电子的反粒子是正电子,它带有与电子相同的质量,能量,自旋和等量的正电荷(正电子的电荷为 1,负电子的电荷为-1)。
下面我们开始讲的再深奥一些:物质的基本构成单位——原子是由电子、中子和质子三者共同组成。中子不带电,质子带正电,原子对外不显电性。相对于中子和质子组成的原子核,电子的质量极小。质子的质量大约是电子的1840倍,当电子脱离原子核束缚在其它原子中自由移动时,其产生的净流动现象称为电流。
但是,电子并非基本粒子,100多年前,当美国物理学家Robert Millikan首次通过实验测出电子所带的电荷为1.602×10-19C后,这一电荷值便被广泛看作为电荷基本单元。然而如果按照经典理论,将电子看作“整体”或者“基本”粒子,将使我们对电子在某些物理情境下的行为感到极端困惑,比如当电子被置入强磁场后出现的非整量子霍尔效应。
基本粒子
然后我们来说说怎么得到电电子被归在亚原子粒子中的轻子类。轻子是物质被划分的作为基本粒子的一类。电子带有二分之一自旋,满足费米子的条件(按照费米-狄拉克统计)。电子所带电荷约为-1.6×10-19库仑,质量为9.10956×10-31kg(0.51MeV/c2)。通常被表示为e⁻。与电子电性相反的粒子被称为正电子,它带有与电子相同的质量,自旋和等量的正电荷。电子在原子内做绕核运动,能量越大距核运动的轨迹越远,有电子运动的空间叫电子层,第一层最多可有2个电子。第二层最多可以有8个,第n层最多可容纳2n2个电子,最外层最多容纳8个电子。最后一层的电子数量决定物质的化学性质是否活泼,1、2、3电子为金属元素,4、5、6、7为非金属元素,8为稀有气体元素。
物质的电子可以失去也可以得到,物质具有得电子的性质叫做氧化性,该物质为氧化剂;物质具有失电子的性质叫做还原性,该物质为还原剂。物质氧化性或还原性的强弱由得失电子难易决定,与得失电子多少无关。
由电子与中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所组成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1842倍。当原子的电子数与质子数不等时,原子会带电,称这原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。静电在日常生活中有很多用途,例如,静电油漆系统能够将瓷漆(英语:enamel paint)或聚氨酯漆,均匀地喷洒于物品表面。
电子与质子之间的吸引性库仑力,使得电子被束缚于原子,称此电子为束缚电子。两个以上的原子,会交换或分享它们的束缚电子,这是化学键的主要成因。当电子脱离原子核的束缚,能够自由移动时,则改称此电子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在许多物理现象里,像电传导、磁性或热传导,电子都扮演了要重要的角色。移动的电子会产生磁场,也会被外磁场偏转。呈加速度运动的电子会发射电磁辐射。
电荷的最终携带者是组成原子的微小电子。在运动的原子中,每个绕原子核运动的电子都带有一个单位的负电荷,而原子核里面的质子带有一个单位的正电荷。正常情况下,在物质中电子和质子的数目是相等的,它们携带的电荷相平衡,物质呈中性。物质在经过摩擦后,要么会失去电子,留下更多的正电荷(质子比电子多)。要么增加电子,获得更多的负电荷(电子比质子多)。
这个过程称为摩擦生电。
富兰克林导电试验
其实,时至今日,我们能用上电这么个神奇的东西,我们得感谢二傻子富兰克林,要不是他不要命的放起来风筝,或许我们现在还在点煤油灯呢。
现在发电技术分了几种,
1、发电机
不管是煤电、水电、核电,本质上都是通过流体带动发电机工作产生电流,发电机由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。
说到电磁感应定律和电磁力定律,就不得不说电磁感应。那么什么是电磁效应?
公元1600年,英国医生吉尔伯特(1544~1603)做了多年的实验,发现了“电力”,“电吸引”等许多现象,并最先使用了“电力”、“电吸引”等专用术语,因此许多人称他是电学研究之父。在吉尔伯特之后的200年中,又有很多人做过多次试验,不断地积累对电的现象的认识。1734年法国人杜伐发现了同号电相互排斥、异号电相互吸引的现象。1745,普鲁士(德国的前身)的一位副主教克莱斯特在实验中发现了放电现象。
18世纪中叶,在大洋彼岸的美国,大电学家富兰克林又做了多次实验,进一步揭示了电的性质,并提出了电流这一术语。他认为电是一种没有重量的流体,存在于所有的物体之中。如果一个物体得到了比它正常的份量更多的电,它就被称之为带正电(或“阳电”);如果一个物体少于它正常份量的电,它就被称之为带负电(或“阴电”)。所谓放电就是正电流向负电的过程。富兰克林的这一说法,在当时确实能够比较圆满地解释一些电的现象,但对于电的本质的认识与我们现在的“两个物体互相磨擦时,容易移动的恰恰是带负电的电子”的看法却是相反。
富兰克林
在早期,许多科学家一致认为电和磁不存在任何联系。而到了1820年,丹麦科学家奥斯特发现了电流的磁效应,即电能生磁。如果一条直的金属导线通过电流,它的周围空间就会产生相应的圆形磁场,而且导线中的电流越强,产生的磁场就越强。这种现象就是电磁效应。电磁效应揭示了磁与电之间存在着联系,把电学和磁学联系了起来。人们根据电磁效应发现了一系列重要的电磁规律,并发明了电磁铁,将其应用于生活之中。现在,电磁效应在电工、电子技术、电气化、自动化等方面应用广泛,对推动社会生产力和科学技术的发展发挥了重要的作用。
奥斯特,丹麦物理学家
大家都知道了电磁效应,那么又是如何发电的呢?
奥斯特发现电流磁效应后,有许多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题。1831年,一位叫迈克尔.法拉第的科学家发现了磁与电之间的相互联系和转化关系。只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流。这种利用磁场产生电流的现象称为电磁感应(Electromagnetic induction),产生的电流叫做感应电流。
自学成才的迈克尔 . 法拉第
那么发电机是如何发电的呢?
发电机是根据电磁感应原理制成,将机械能转变为电能的电机,最早产生于第二次工业革命时期,由德国工程师西门子(对,你没听错,就是你现在听起来很牛逼的那个西门子公司的西门子)于1866年制成。它分为交流发电机和直流发电机两大类,二者除换向器外,装置基本相似。以交流发电机为例,其工作原理是,当交流发电机的轴转动时,安装在轴上的线圈也在磁场中旋转,使得线圈的一边向上运动,而另一边向下运动,这种运动使线圈产生了感应电流。当线圈转过半周后,线圈的左右两条边在磁场中的方向发生改变,其产生的电流方向也就发生改变。交流电就这样被发出来了。
西门子
一直到现在为止,不管是煤电、水电、核电,本质上都是通过流体带动发电机工作产生电流,发电机由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。所以有人说人类获取能源的方式就是变着样的烧开水的过程。
最先进的发电方式:核聚变反应堆
解惑:电子也在绕圈圈
上面说过,电流本质是电子的位移,电子也是一种物质,一定的空间里边,物质遵从守恒定律,物质无法消失也无法再生,只会从另外一款物质转换成另外一种。电子也是一种物质,在没有发生化学反应的过程中,它并不会转换成另外一种物质,所以它会守恒。发电机工作时候切割磁力线,只是让磁场转换成电场,驱动电子从金属一端经过特殊的回路(这个回路就是到我们各家的复杂电路啦)跑到另外一端而已,电子并没有消失,当磁场消失以后,电子停止了运动,并不会增加或者减少。
有人会说,灯泡在发光啊,根据能量守恒定律,电转换成了光,电子应该有损失吧?
灯泡是根据电流的热效应原理制成的。灯泡接上额定的电压后,电流通过灯丝而被加热到白炽状态(2000C以上),因而发热发光.从而在工作时,将电能转化为内能和光能。
而光是能量的一种形式是由原子释放出来的。它是由许多微小类似粒子的小团组成的,这些类似粒子的东西有能量和动量但没有质量。这些粒子叫做可见光子,是光的最基本单位。当电子受到激发的时候原子就会释放出可见光子。如果你已经知道原子是如何工作的话,那你也就知道电子是围着原子核走来走去的负极电荷粒子。原子的电子有着不同等级的能量,主要取决几个因素,包括它们的速度和离原子核的距离。电子不同的能量等级占有不同的轨函数和轨道。
通常来说,有着大能量的电子就会离原子核更远当原子得到或失去能量的时候,是以电子移动表示变化。当有某些东西将能量传到原子的时候---以热量为例子-电子可以暂时被推进到一个更高的轨道(远离原子核)。电子只是在这一轨道位置停留极短时间:几乎马上就被退回到原子核,到达它的原始轨道上。这时电子就以光子的形式放出额外的能量。发光的波长取决于有多少能量被释放出来,这也就取决于电子所在的轨道位置。因此,不同类的原子就会释放出不同类的可见光子。换句话说就是光的颜色是由受激发的原子种类决定。
灯泡的结构非常简单。在它的底部有两个金属接触点,是用来连接电的。金属接触点有两条接触到一个薄金属灯丝的线。灯丝坐落在灯泡的中央,由一个玻璃支撑住的。线和灯丝都包在充满惰性气体的玻璃灯泡的里面,通常都是氩惰性气体当灯泡连上电源的时候,电流就会从其中一个接触点流到另一个接触点然后再流到线和灯丝。实心导体线电流中的大量自由电子从负极带电区移动到正极带电区。在振动原子的跳跃电子可能暂时被推到一个更高的能量位置。当它们落回原始正常位置时候,电子就会以光子形式释放出额外能量。金属原子释放大部分的红外线可见光子,人们的眼睛是可以看见的。但如果它们被加热到大约4000华氏温度的时候灯泡就会发出大量的可见光。几乎在所有的白炽灯泡都用到钨,因为它是最理想的灯丝材料。金属必须要加热到极高的温度才会发出有用可见光。实际上大多数金属在达到这个温度之前都会熔化了,而钨丝却有着不寻常的高熔化温度。但钨丝在这么高的温度时会起火,如果在条件允许下,两种化学物之间就会产生反应而引起燃烧,灯泡里的灯丝是由一个密封,无氧空间覆盖来防止燃烧。把灯泡里的空气都吸出来创造一个接近真空的状态--就是说里面没有任何物质。由于几乎没有任何气体特物质在里面,所以物质就不会燃烧。这个方法存在一个问题就是钨原子蒸发作用。在这么高的温度里,在一个真空灯泡里,自由钨原子以直线射出。随着越来越多的原子蒸发,灯丝就开始衰变并且玻璃开始变黑,这大大减少了灯泡的寿命。
也就是说,是的,电流通过介质并发光会造成能量损失,但是这个能量损失并非是电流中电子的能量损失,而是激发受体也就是介质所产生的能量损失。
2、化学电池
化学电池都与氧化还原反应有关。在18世纪末,人们把与氧化合的反应叫氧化反应,而把从氧化物中夺取氧的反应叫还原反应。到19世纪中叶,有了化合价的概念,人们把化合价升高的过程叫氧化,把化合价降低的过程叫还原。20世纪初建立了化合价的电子理论,人们把失电子的过程叫氧化,得电子的过程叫还原。以干电池为例,由于电池内由于发生化学变化,碳棒上聚集了许多正电荷,锌筒表面上聚集了许多负电荷。碳棒和锌筒叫做干电池的电极, 聚集正电荷的碳棒叫正极, 聚集负电荷的锌筒叫负极。干电池外壳上符号 、-分别表示电池的正极和负极。当正负极电路联通时,电路里的自由电荷所以能发生定向移动形成电流, 是因为电源的正极有多余的正电荷,电源的负极有多余的负电荷,从而在电路上产生了电压。电源的作用跟抽水机相似, 它不断使正电荷聚集在正极上, 负电荷聚集在负极上,保持两极间有一定的电压,使连接导体中不断有电流通过。
干电池
3、太阳能电池
太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置.光生伏特效应:假设光线照射在太阳能电池上并且光在界面层被接纳,具有足够能量的光子可以在P型硅和N型硅中将电子从共价键中激起,致使发作电子-空穴对。界面层临近的电子和空穴在复合之前,将经由空间电荷的电场结果被相互分别。电子向带正电的N区和空穴向带负电的P区运动。经由界面层的电荷分别,将在P区和N区之间发作一个向外的可测试的电压。此时可在硅片的两边加上电极并接入电压表。对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。经由光照在界面层发作的电子-空穴对越多,电流越大。界面层接纳的光能越多,界面层即电池面积越大,在太阳能电池中组成的电流也越大。
光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波(该频率称为极限频率threshold frequency)照射下,某些物质内部的电子吸收能量弹出物质而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现,而正确的解释为爱因斯坦所提出。科学家们在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。
一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。
(1) 光—热——动—电转换方式:通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—动再转换成电最终转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。
(2) 光—电直接转换方式该方式:利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电相比,太阳能电池不会引起环境污染。
太阳能电池
不管采用的是那种发电方式,都是通过特殊的力学效应,将电子从原有轨道逼出,使其按照人类所划定的轨道运行,进而形成电流。
声明:文章仅代表原作者观点,不代表本站立场;如有侵权、违规,可直接反馈本站,我们将会作修改或删除处理。
图文推荐
2022-12-24 10:17:02
2022-12-24 10:11:30
2022-12-24 10:11:07
2022-12-24 10:05:18
2022-12-24 10:05:02
2022-12-24 09:59:28
热点排行
精彩文章
2022-12-24 10:17:08
2022-12-24 10:11:51
2022-12-24 10:05:23
2022-12-24 10:05:07
2022-12-24 09:59:33
2022-12-24 09:59:17
热门推荐