最新新闻:

交大强势学科「屠呦呦的科研团队」

时间:2023-03-24 18:29:02来源:搜狐

今天带来交大强势学科「屠呦呦的科研团队」,关于交大强势学科「屠呦呦的科研团队」很多人还不知道,现在让我们一起来看看吧!

胸怀国之大者、弘扬西迁精神、

勇担国家使命、共创交大荣誉!

坚持“四个面向”,

教研一体、学科交叉

产教融合、协同育人

聚焦科技前沿,服务国家需求,

交大人,在行动!


近期,西安交大科研人员在基因组结构变异检测、生物分子团簇结构及超快电离机制研究、血管炎症机制、用于眼部健康监测的自供电柔性有机集成电子器件、动态超分子离子导电弹性体研究、自旋电子学、紫精自由基超分子金属大环研究、具有高透明度双向热响应型柔性智能窗光学薄膜、自旋波激发材料等领域相继取得重要进展。


快跟着交小童一起来看看吧!

为交大科技硬实力打Call!

|目录|

1、西安交大科研人员在《自然·方法》发表基因组结构变异检测的突破性研究成果

2、西安交大科研人员在生物分子团簇结构及超快电离机制研究方面取得进展

3、西安交大科研人员在《血液》杂志以封面文章发表血管炎症机制的突破研究成果

4、西安交大科研人员开发出用于眼部健康监测的自供电柔性有机集成电子器件

5、西安交大科研人员在动态超分子离子导电弹性体研究领域取得新进展

6、西安交大科研人员在自旋电子学领域取得新进展

7、西安交大科研人员在紫精自由基超分子金属大环研究领域取得重要进展

8、西安交大科研团队开发出具有高透明度双向热响应型柔性智能窗光学薄膜

9、西安交大科研人员在自旋波激发材料领域取得新进展


#01

西安交大科研人员在《自然·方法》发表基因组结构变异检测的突破性研究成果

发表期刊

《自然·方法》

(Nature Methods)

内容摘要

现有数据表明,基因组结构变异与丰富多彩的生物性状进化和严重疾病表型密切相关。由于结构变异高发区域序列重复度高、存在大量未知复杂类型,传统基于建模策略计算方法存在大量错检、漏检,阻碍深入探究结构变异在生物性状进化和疾病发生中的作用。为了避免由于建模而造成的漏检和错检,谷歌公司首次提出了一种基于深度学习的从图片中直接识别点突变和短插入缺失计算框架,该方法彻底放弃了传统的基于建模的检测方案,同时结合了在大数据背景下人工智能的优势,使得其性能远超业界标准,并迅速在多个领域取代了传统检测方法。然而,面对日益增长的基因组结构变异检测需求,谷歌提出的计算框架只能针对小的插入删除(INDEL)和单核苷酸突变(SNP),并不适用于基因组上大尺度、复杂类型的结构变异。

近日,西安交通大学叶凯教授团队在《自然·方法》(Nature Methods)杂志上发表题为《SVision:深度学习方法解析复杂结构变异》(SVision: A deep learning approach to resolve complex structural variants)的研究成果。该研究基于复杂结构变异背景混杂、类型繁多未知的难点,设计了二维序列相似性图,首次将结构变异研究从序列空间建模求解转换为图像空间的多目标识别问题,实现了背景高噪声下未知复杂类型结构变异的精准识别。

该方法主要由编码模块,基于卷积神经网络的多目标识别模块以及基于图结构的复杂结构变异表征模块构成。其中编码模块成功去除了基因组背景噪声对于检测的影响;多目标识别模块实现了只用简单结构变异训练神经网络就可以识别未知复杂类型结构变异的功能,避免了耗费大量资源创建复杂结构变异训练集;复杂结构变异表征模块为后续统一不同研究中报道的复杂结构变异类型提出了重要解决方案,避免了专家导向的复杂结构变异类型定义方式。通过使用该方法,研究者首次系统性地分析了单个人类基因组中携带的复杂结构变异以及其内部结构,揭示了复杂结构变异在影响基因功能和基因组进化中起到的重要作用。本项工作填补了领域内复杂结构变异检测及表征的方法空白,为后续大规模人群队列全类型结构变异研究提供了新的解决方案。

文章作者

西安交通大学自动化学院博士生蔺佳栋和王松渤为该论文共同第一作者,叶凯教授为唯一通讯作者。

文章链接地址

https://www.nature.com/articles/s41592-022-01609-w


#02

西安交大科研人员在生物分子团簇结构及超快电离机制研究方面取得进展


发表期刊

《自然通讯》

(Nature Communications)

内容摘要

分子间非共价键的弱相互作用,比如氢键、p-堆积相互作用等,是构造分子团簇的重要驱动力,对生物大分子结构稳定和功能特性起着关键性作用。由p-堆积相互作用组成的芳香环分子三聚体是构建蛋白质、DNA等生物大分子体系的基本单元。芳香环分子团簇具有复杂的构象特征,其结构和动力学性质研究仍是生物分子团簇领域的一个科学难题。

西安交通大学物理学院任雪光教授团队与合作者建立了电子碰撞和强场飞秒激光电离相结合的实验方案,发展生物分子团簇束源技术、多粒子符合动量成像方法,以苯三聚体为模型体系,开展了团簇库仑爆炸实验研究及分子动力学模拟。研究发现生物分子团簇中次序电离诱导分子间库仑衰变(dSI ICD,图a)及分子间双重库仑衰变(dICD,图b)等超快电离反应机制。实验证明了分子的内价层电离能够在飞秒时间尺度内诱发团簇多电离及库仑爆炸反应,揭示了团簇体系中次序电离诱导分子间库仑衰变机制的重要性。通过多粒子符合动量成像方法及第一性原理计算,实现了原子水平和飞秒时间尺度上的团簇结构及构象表征,为超高时空分辨分子团簇结构及动力学研究提供了重要基础。该研究工作证实了dSI ICD和dICD等超快电离解离过程研究是团簇结构表征的有力工具,在蛋白质成像方面具有潜在的应用价值,同时也为深入理解生物大分子电离辐射损伤机制提供了关键证据。

(a)电子束诱导苯三聚体次序电离诱导分子间库仑衰变(dSI ICD)过程

(b)苯三聚体分子间双重库仑衰变(dICD)过程

文章作者

西安交通大学物理学院任雪光教授为文章通讯作者,物理学院博士生周家琪为第一作者,西安交通大学物理学院及教育部物质非平衡合成与调控重点实验室是该论文第一作者单位,物理学院赵永涛教授、吉林大学丁大军教授科研团队等参与了该项工作。

论文链接

https://doi.org/10.1038/s41467-022-33032-2


#03

西安交大科研人员在《血液》杂志以封面文章发表血管炎症机制的突破研究成果


发表报刊

《血液》(Blood)

内容摘要

炎症反应是机体对于各种感染的自身防御机制,当病菌侵入人体体内时,血液中部分白细胞粘附于激活的毛细血管内皮细胞,通过变形穿过内皮间隙及血管壁,进入组织间隙,并集中到病菌入侵部位,将病菌包围﹑吞噬。白细胞游出血管(extravasation)是炎症反应最重要的特征,构成了血管炎症反应的主要防御环节。尽管在白细胞游出过程中,白细胞及血管内皮细胞均暴露于血液剪切力之中,但人们对此过程中涉及的力学机制尚缺乏研究。此外,白细胞在跨血管转移过程中会激活内皮细胞,引起钙内流,但过去近20年人们一直没有找到相关的离子通道或分子机制。

近日,西安交通大学医学部王胜鹏教授联合西安交大第一附院医院袁祖贻教授及德国马普所(Max-Planck-Institute)Stefan Offermanns院士团队在血液领域顶刊《血液》(Blood)杂志以封面文章形式发表了题为《白细胞渗出过程必需内皮压电型机械敏感离子通道组件1的参与》(Mechanosensation by endothelial PIEZO1 is required for leukocyte diapedesis) ”文章,报道了白细胞在跨越血管转移过程中,受到血流剪切应力的干预,引起血管内皮细胞膜张力升高,该机械力被Piezo1离子通道感知,引起内钙升高,从而激活内皮细胞,导致内皮细胞收缩及屏障开放,最终诱导白细胞完成转移。

为了探究血流剪切力对白细胞游出血管的作用及影响,研究团队运用离体剪切力模拟结合siRNA筛选技术系统筛选了内皮细胞上可能影响白细胞转移(trans-migration)的基因。研究团队发现,低剪切力对于白细胞转移有明显的促进作用,更重要的是缺失机械力敏感离子通道Piezo1的内皮细胞对白细胞的转移能力明显下降。同时,在白细胞转移过程中及剪切力的共同作用下,内皮细胞会产生强烈的钙信号,但缺失Piezo1后,该钙信号及其激活的下游信号几乎完全被抑制,这些结果提示Piezo1是白细胞激活内皮细胞,介导白细胞转运的关键基因。

研究者进一步采用内皮细胞特异性Piezo1敲除小鼠,通过巴豆油,白细胞介素IL-1及肿瘤坏死因子TNF-α等在小鼠体内建立多种炎症模型,利用血管三维成像分析技术发现,野生型小鼠在炎症刺激后有大量的白细胞从血管内转移至血管外组织中。而在内皮Piezo1敲除小鼠中,超过60%的白细胞仍然在炎症刺激后被限制在血管管腔内,不能完成正常的跨越血管转移。进一步,研究者通过GFP荧光标记小鼠血管内皮,利用双光子技术实现在体血管成像,在此基础上对白细胞在微血管中的活动进行了实时观察,结果发现在内皮Piezo1敲除血管里,白细胞在血管内壁上附着,滑行及粘附等行为均未见异常,但是白细胞的跨血管转移比正常小鼠减少了60%左右。基于上述现象,研究者提出Piezo1是血管内皮细胞介导白细胞转移,完成血管炎症反应的关键机制。

Piezo1是诺奖获得者Arderm Potapotian实验室发现的一种新型的机械力敏感离子通道,在心肌细胞、血管平滑肌细胞、骨骼干细胞及脂肪细胞等发挥力学感知作用。研究者团队前期也证实Piezo1是血管内皮细胞感知血流剪切力的关键受体, 为了进一步从力学角度探究Piezo1介导白细胞转移的分子机制,团队运用新型细胞膜张力荧光探针FliptR及MSS biosensor 探针,并结合FLIM荧光寿命成像及FRET技术,记录了白细胞在转移过程中对内皮细胞膜产生的力学影响,通过力学成像,研究者发现在静止状态下白细胞与内皮细胞接触仅造成内皮细胞膜张力的微弱升高,但如果在白细胞跨内皮细胞转移时加入流体剪切力,会造成内皮细胞膜张力的显著升高,从而激活细胞膜上力学受体Piezo1,导致外钙内流,进而激活Src, PYK2,MLC等一系列细胞内信号并导致VE-cadherin内吞,最终引起内皮细胞收缩及内皮屏障开放,从而介导白细胞跨越内皮转移至血管外。

文章作者

该工作得到西交大一附院袁祖贻教授指导,生命学院王昌河团队的技术支撑,西安交通大学为该论文的第一和通讯单位。

原文链接

https://pubmed.ncbi.nlm.nih.gov/35443048/


#04

西安交大科研人员开发出用于眼部健康监测的自供电柔性有机集成电子器件


发表报刊

《npj柔性电子》

(npj flexible electronics)

内容摘要

近些年来,可用于实时监测人体健康情况和生物信息的生物电子器件受到了广泛关注。可穿戴器件虽已成功用于监测心电图、脉搏血氧、葡萄糖等,可以满足日常人体身体健康监测需求,但已有的可穿戴器件如手表、手环等体积较大,监测葡萄糖的器件仍为有创检测且为刚性,与人体皮肤兼容性差且受电源与器件稳定性影响,其寿命较短。能源供给是可穿戴电子器件发展的一个主要限制因素。下一代生物电子器件应具备自供电功能且摆脱笨重的外部电源和布线。目前已报道的用于可穿戴和可植入生物电子设备的纳米发电机和生物燃料电池的能量转换效率低且供电不稳定,难以满足复杂传感系统和信号传输系统的能量需求。

(a)集成器件与隐形眼镜示意图,插图为Ca2 和葡萄糖传感器的栅极修饰层


针对以上问题,西安交通大学金属材料强度国家实验室马伟教授联合电气学院王来利教授团队研发了一种由有机太阳能电池(OSC)自供电的基于有机电化学晶体管(OECT)的柔性多路传感器,该器件可在室内光驱动下用于监测泪液中葡萄糖和Ca2 的浓度。该集成器件由溶液刮涂法和热蒸发的简单工艺制得,具有批量生产的巨大潜力。通过优化OECT沟道活性层的形貌,传感器对生物标志物的浓度变化有着显著响应。在不使用其他电路元件(如电阻器和电容器)的情况下,可以通过选择合适的OSC活性层和传输界面层来调制OSC的输出,满足OECT传感器的供电要求。传感器所得信号可以通过集成的NFC单元无线传输到便携设备。该集成器件成功地监测到了一天中不同时间点泪液中葡萄糖和Ca2 的浓度变化。这种自供电多路传感器件有望集成在隐形眼镜上,用于长期无创体内监测和疾病诊断。

文章作者

西安交通大学材料学院和电气学院交叉学科博士生林保均,硕士生王萌为共同第一作者。西安交通大学金属材料强度国家重点实验室马伟教授与西安交通大学电力设备电气绝缘国家重点实验室王来利教授为共同通讯作者。该工作合作者还包括西安交通大学金属材料强度国家重点实验室陈凯副教授、赵超博士以及西安交通大学信息与通信工程学院闫森教授。

论文链接

https://www.nature.com/articles/s41528-022-00211-6

课题组网站

https://gr.xjtu.edu.cn/en/web/msewma/home


#05

西安交大科研人员在动态超分子离子导电弹性体研究领域取得新进展


发表期刊

《自然通讯》

(Nat. Commun)

内容摘要

具有离子传导性质和传感功能的聚合物离子导体在柔性离子电子器件领域受到了广泛关注。目前大多数凝胶系的离子导体主要依靠大量的液体为自由离子提供移动环境、共价交联网络提供力学强度;无液体的离子导体通过极性聚合物链和链段运动进行离子传输,聚合物网络结构对离子导体整体性能起着决定性作用。然而,凝胶系离子导体由于液体的存在会导致较差的热稳定性和电化学稳定性,并使力学性能下降,基于共价键的交联网络则会导致聚合物结构不能产生可逆转变,从而难以实现材料自主愈合和可循环使用。无液体的离子导电弹性体因其较弱的链段运动能力使其离子传输受限,导致离子电导率较低。这些源自不同分子机制的不同性质通常是相互矛盾的。因此,设计开发同时具有高离子电导、可拉伸性、高强高韧、自修复功能和可循环使用的聚合物离子导体仍然极具挑战性。

动态超分子离子导电弹性体(DSICE)的

分子设计机理示意图


对此,西安交通大学化学学院丁书江教授团队提出了“相锁定”策略,结合动态超分子工程,开发了一类新型离子导体—动态超分子离子导电弹性体(dynamic supramolecular ionic conductive elastomers,DSICE)。通过锁定软相中的聚醚主链用于锂离子(Li )传输,调控硬相中的动态二硫键和超分子四重氢键产生力学多功能性和自愈能力,精细的结构设计实现了多种性能的完美结合。设计的DSICE具有高离子电导率(30°C时为3.77 × 10-3 S m-1)、高透明度(92.3%)、优异的拉伸性(2615.17%伸长率)、强度(27.83 MPa)和韧性(164.36 MJ m−3)、自愈能力(室温下约为99%)和可回收性。这项工作为设计先进的离子导体提供了一种有趣的策略,并为柔性离电器件或固态电池提供了思路。相关工作以《相锁定策略构筑超韧、自主愈合和可回收的动态超分子离子导电弹性体》(Phase-locked Constructing Dynamic Supramolecular Ionic Conductive Elastomers with Superior Toughness, Autonomous Self-healing and Recyclability)为题发表在《自然通讯》(Nat. Commun)上。

文章作者

该论文第一作者为西安交通大学化学学院博士研究生陈晶,通讯作者为化学学院丁书江教授。

文章链接地址

https://www.nature.com/articles/s41467-022-32517-4

课题组网站

https://gr.xjtu.edu.cn/en/web/dingsj


#06

西安交大科研人员在自旋电子学领域取得新进展


发表期刊

《美国化学学会-纳米》

(ACS Nano)

内容摘要

自旋电子学技术是后摩尔时代的核心关键技术之一,在磁存储、逻辑运算、仿生芯片、类脑计算、量子计算等领域都有着广阔的前景。自旋轨道力矩效应提供了局域信息写入机制,利用电子的自旋属性实现磁矩的高效翻转,是目前自旋电子学领域的研究热点。受限于自旋霍尔角和电阻率的正相关性,不能通过无限提高自旋霍尔角来实现临界电流的降低。如何平衡电阻率和自旋霍尔角是低功耗自旋电子学器件走向商业化的一个核心科学问题。

亚纳米β‑W插层结构示意图及其

对自旋轨道力矩器件的影响


近日,西安交通大学电信学部电子科学与工程学院刘明教授团队构建了具有亚纳米插层的铁磁/重金属异质结,在保持低电阻率的前提下成功实现了自旋轨道力矩效率的增强。亚纳米β‑W插层对界面电荷-自旋转换效率的增强是平衡电阻率和自旋霍尔角的关键所在。β-W (0.3 nm)/α-W (5.7 nm)的电阻率(45.7 μΩ cm)在保持和α-W (6 nm)相似电阻率(53.5 μΩ cm)的前提下,自旋轨道力矩效率增强了大概3倍;此外,基于亚纳米插层构建的自旋轨道力矩-磁随机存储器(SOT-MRAM)模型,理论预测其能耗降低在50%以上。该工作为开发低能耗SOT-MRAM等自旋电子器件提供了一个可行的优化方案。

文章作者

西安交通大学电信学部电子科学与工程学院刘明教授团队李耀进助理教授为该论文第一作者,博士生查茜为共同一作,刘明教授为通讯作者。

论文链接

https://pubs.acs.org/doi/full/10.1021/acsnano.2c00093

刘明教授主页

http://gr.xjtu.edu.cn/web/mingliu


#07

西安交大科研人员在紫精自由基超分子金属大环研究领域取得重要进展


发表期刊

《德国应用化学》

(Angewandte Chemie International Edition)

内容摘要

紫精衍生物因其独特的氧化还原性质而备受学术界和工业界的关注。含硒紫精衍生物(SeV2 )的开发不仅解决了传统紫精分子(双季铵化的4,4’-联吡啶盐)共轭程度低、可见光吸收弱等不足,还可通过其优异的电子转移特性构筑一系列光催化体系,为实现太阳能的高效转换提供可能。然而,含硒紫精小分子依然存在着自由基阳离子(SeV •)稳定性差、分子电荷分离效率低等问题,阻碍了含硒紫精在高效光催化中的进一步发展。尽管扩大π共轭体系、引入给电子或吸电子基团等方法可在一定程度上增强含硒紫精阳离子自由基的稳定性和生成效率,但并不能从本质上解决上述问题。

针对上述问题,西安交通大学前沿院何刚教授课题组在前期工作基础上,通过将紫精自由基与超分子化学相结合,发展了一类具有高稳定性自由基阳离子和长寿命电荷分离态含硒紫精修饰的超分子金属大环。大环结构的形成加速了分子内电子转移过程,提升了环境光激发下含硒紫精自由基的生成效率。含硒紫精修饰的金属大环可用于制备电致变色器件,并表现出优于紫精单体的自由基稳定性。同时将其作为光敏剂和电子转移剂,大幅提高了含硒紫精对可见光诱导交叉脱氢偶联(CDC)反应的光催化效率(>80%)。更为重要的是,飞秒瞬态吸收(fs-TA)光谱的研究不仅从动力学角度证明了金属大环的高效电子转移和长寿命电荷分离,更加深了对光催化反应机制的理解。该研究首次实现了超分子复合物(SCCs)在电致变色和高效CDC光催化反应中的应用,为新型功能化SCCs的设计合成提供了新思路,也为紫精阳离子自由基化学的发展奠定了坚实的基础。

文章作者

西安交通大学前沿院博士研究生张思坤为论文第一作者,何刚教授为论文通讯作者,西安交通大学为论文唯一通讯作者单位。

论文链接

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202209054

何刚教授课题组主页

http://gr.xjtu.edu.cn/web/ganghe


#08

西安交大科研团队开发出具有高透明度双向热响应型柔性智能窗光学薄膜


发表期刊

《微尺度》(Small)

内容摘要

智能窗(Smart Window)通过调控透射太阳光谱可以有效减少建筑的照明、供暖和制冷能耗,已成为当前国内外研究热点。传统的电响应型和机械响应型智能窗使用时需人为施加刺激源以及持续能源输入,而热响应型智能窗凭借其环境自适应性和无外部能源消耗特性在节能建筑和按需设备中极具应用潜力。目前已开发的热响应型智能窗依赖于单一相变材料系统中的热致相变,然而,由于其固有物化特性,如低透明度和高相变温度(二氧化钒)、低结构强度(水凝胶)以及相变液态依赖性(水凝胶、钙钛矿),传统热响应型智能窗并不适用于实际安装及应用。

基于折射率动态匹配的热响应型智能窗的

原理、制备和性能概述


针对上述问题,西安交通大学研究人员利用折射率动态匹配原理,通过一步乳化法将乙二醇溶液微滴嵌入聚二甲基硅氧烷弹性聚合物(PDMS)基体中,成功构建具有高透明度、双向温度响应的柔性智能窗光学薄膜。研究发现,该智能窗薄膜可在透光率20%~92%之间可逆调控。在室温下,由于两相化合物折射率匹配,透明度呈最大值。随温度升高或降低,两相折射率之差逐渐增大,致使相界面处的散射及反射现象急剧增强,薄膜整体透过率减小。此外,折射率色散现象使得该智能窗薄膜呈现独特的波长选择性透过特性,室温下薄膜呈防紫外透过性,高温下长波红波被屏蔽。通过调节乙二醇溶液浓度,智能窗可以在13~68℃的宽温度范围内自由调节其有效光学透过-温度响应。这种基于两相折射率动态匹配的策略使热响应型智能窗不再依赖相变材料,大大拓宽其材料选择范围,在智能窗、防伪、光开关和光学选择等智能光学器件领域具有广阔应用前景。

文章作者

西安交通大学物理学院智能材料与传感研究所博士生李佳宁、副教授卢学刚为论文第一作者,张垠副教授和杨森教授为论文通讯作者。

论文链接

https://onlinelibrary.wiley.com/doi/10.1002/smll.202201322


#09

西安交大科研人员在自旋波激发材料领域取得新进展


发表期刊

《美国化学会志》

(Journal of the American Chemical Society)

内容摘要

通过电流写入和读取信息来完成数据的存储和处理的传统方式,使得电流在流经电阻时产生焦耳热,从而影响器件的功能与使用效率。自旋波是磁性系统中自旋进动的集体激发态,其量子化的准粒子称为磁子,具有类似电子—承载和传递自旋信息的功能。由于自旋传递过程不需要导电电荷参与,可以避免电流传输产生的焦耳热问题,极大地降低器件的功耗,满足现代电子设备高能效的需求。然而,目前该类材料的设计比较困难,一般需要具有非线性排列的磁矩才能够实现。

基于前期环状稀土磁性分子的研究,西安交大前沿院郑彦臻教授课题组构筑了系列分子磁环{ScnGdn}(n= 4,6,8)。通过保持分子磁环的结构基元与配位模式不变,改变其拓扑结构,使分子内金属—金属间距离规律改变,进而调节金属离子之间的磁交换作用与偶极—偶极相互作用强度,达到控制自旋波激发的目的。该系列分子磁环中可产生的明显自旋波激发是分子内反铁磁交换作用和偶极—偶极相互作用相结合的结果,该全新模型为分子基自旋波材料和具有可调节特性自旋波器件的开发提供了新视角。

文章作者

西安交大前沿院博士研究生张浩澜为论文第一作者,前沿院为论文唯一通讯作者单位。

论文链接

https://pubs.acs.org/doi/10.1021/jacs.2c05421

课题组网站

http://gr.xjtu.edu.cn/web/zheng.yanzhen/hom




「出品 / 党委宣传部」


内容来源 / 西安交大新闻网

文字&图片 / 电信学部 物理学院 基础医学院

材料学院 化学学院 前沿院

责任编辑 / 谭金巍 崔可嘉

声明:文章仅代表原作者观点,不代表本站立场;如有侵权、违规,可直接反馈本站,我们将会作修改或删除处理。

图文推荐

热点排行

精彩文章